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A parameter is found that governs the magnitude of thermodynamic mixing effects 
in gases. Values are calculated for the excess second virial coefficient and its 
derivatives for a number of binary gas systems at 298.15=K. 

As is known [i, 2], deviations from the Amag and Dalton laws that are valid for ideal 
gases hold for real gas mixtures. The imperfection of a gas mixture is determined by the 
magnitudes of the bulk and thermal mixing effects at constant temperature and pressure: 

, 

h T,p 

AH ~--- {Hmtx-- ~ x~Hk} 
~T,p 

(1) 

(2) 

and the baric mixing effect at constant temperature and volume: 

h T , v  
(3) 

where v k and H k are the molar volume and enthalpy of the individual components, and x k and 
Pk are their molar concentrations and partial pressures. 

The thermodynamic mixing effects can be computed if the equation of state of the gas 
mixture is known. At moderate densities when the virial equation of state is valid, in a 
first approximation we have for binary gas systems [2] 

Av E = 2xlx~E, (4) 

AHE= 2x~x2p ( E - -  T .dE ) 
dT ' 

(5) 

where 

Ap. = 2xlx~E p (6) 
p RT + 2x~x2Ep ' 

1 B E=BI~--~(11§ (7) 

is the excess second virial coefficient. 

Therefore, the thermodynamic mixing effects in gases are determined in a first approxi- 
mation by the magnitude of the excess second virial coefficient and its derivatives. 

Experimental data on the excess second virial coefficient are not numerous and do not 
possess sufficient accuracy even in those cases when the properties of the individual compo- 
nents have been studied well. Consequently, utilization of the results of the molecular the- 
ory of gases here is of special value. 

The possibility is investigated below of utilizing a model pair potential (12-7, 6) [3, 
4] and modified combination Kong relationships [5] to compute thermodynamic mixing effects in 
gases at moderate densities. 
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TABLE I. Comparison between Computed Values of the Excess 
Second Virial Coefficient and Experimental Data [7],* E in 
cm3/mole 

Ne--Ar  Ne--Kr Ne--Xe 
T, K I 

[ exp.  / eomp. exp. comp. 

213 
223 
242 
262 
276 
295 
330 
365 
400 
425 
450 
475 

18,5 
18,5 
17,1 
16,5 
14,9 
13,1 
l1,3 
9,6 
7,9 
6,9 
5,9 
4.3 

20,3 
19,1 
17,2 
15,5 
14,4 
13,5 
11,6 
10,2 
9,1 
8,4 
7,8 
7.4 

exp. 1 comp. 

45,4 50,1 
43,1 46,7 
38,5 ~1,7 
34,8 37,3 
33,9 34,7 
31,2 31,9 
25,9 27,6 
23,O 24,2 
19,3 21,5 
18,0 20,O 
17,0 18,6 
14.4 17.4 

120,5 125,4 
113,2 116,4 
99,7 102,7 
87,6 91,3 
81,0 84,6 
74,1 77,0 
62,4 65,9 
54,0 57,4 
47,1 50,9 
43,0 46,9 
39,0 43,7 
35.0 40,9 

--4,7 
--4,8 
--3,5 
--1,6 
--I ,I  
--0,5 
+0,1 
+2,7 
+2,1 
+1,3 
+0,6 
--0,8 

Ar--N~ 

exp. compo 

or 
0 
0- 
0 
0 
0 
0 
0 
0 
0 
0 
0 

*Absolute error of the data in [7] is • cm'/mole. 
%Computed values less than 0.05 are rounded off to zero. 

Values of the excess second virial coefficient and its first derivative were calculated 
for binary systems of nonpolar gases. Comparison of the computations with available experi- 
mental data [6-9] showed that the results are in agreement within the limits of measurement 
error. Presented as an illustration in Table i is a comparison between calculated values for 
a number of binary systems and experimental data in [7]. It can be seen that the magnitude 
of the excess second virial coefficient diminishes as the temperature rises and can vary 
strongly with the replacement of one of the system components. For a given reduced tempera- 
ture the magnitude of the excess second virial coefficient is greater for those systems for 
which the "mixed" force constants a,2 and e,2 differ most radically from the geometric mean 
values. 

According to the modified Kong combination relationships [5], for a model pair potential 
(12-7, 6) the constants a,2 and e,2 are written in the form 

where 

el ~ : Vene2~ [-7, (9 )  

1 l 13 

2 ' 

(10) 

where by definition 

ai i  = f fu  - -  reu , K = 
~ n  \ a n  / 

(ii) 

The function f can be represented as a series in powers of the parameter ~ = (log K)=: 

[= 1 + 1.019.10-~ + 4,00. i0-5g~+ .-- (12) 

It follows from expressions (8) and (9) that the "mixed" force constants a,2 and e,2 
will differ the more radically from the geometric mean values, the greater the magnitude of 
the parameter a. For a system with low values of the parameter a (argon-nitrogen, neon--hy- 
drogen) the function f is quite close to one and the excess second virial coefficient and 
its derivatives are close to zero. In such systems the thermodynamic mixing effects are 
small, while the thermodynamic functions can be computed from the additivity rule (as is veri- 
fied in test [i0]). 

In systems whose components differ noticeably in the magnitude of the force constants 
of the intermolecular interaction, the parameter a has the order of magnitude of 10 (helium-- 
heavy gases). In such systems the thermodynamic mixing effects are substantial, especially 
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TABLE 2. Values of the Excess Second Virial Coefficient and 
Its Derivatives for a Number of Binary Systems, T = 298.15~K 

System 

He--Ne 
He--Ar 
He--Kr 
He--Xe 
He--H2 
He--N 2 
Ne--Ar 
Ne--Kr 
Ne--Xe 
Ne--H2 

1,013 
6,502 
9,091 

13,163 
1,204 
6,233 
2,381 
4,034 
6,872 
0,008 

~O o~ ~o'.o I System 

1,7 
22,7 
44,3 
92,5 
2,1 

20,2 
13,1 
31,4 
750,~8 

1,9 
27,4 
55,9 

125,4 
2,4 

25,0 
16,6 
41,3 

106~6 

4,0 
62,5 

135,8 
327,3 

4,7 
55,5 
38,9 

104,4 
287,3 

0,1 

Ne--N2 
Ar--Iir 
Ar--Xe 
Ar--H2 
Ar--N2 
H2--t(r 
H~r-Xe 
H~--N2 
N2--Kr 
N~--Xe 

2,220 
0,217 
1,163 
2,110 
0,003 
3,679 
5,950 
1,958 
0,269 
1,280 

11,1 
4,4 

29,8 
102~0 

29,8 
73,7 
10,2 
5,5 

32,7 

2" 

14,5 33,3 
6,5 18,3 

46,7 137,1 
i5,2 35,9 
0,1 0,2 

39,4 100,4 
03,9 281,4 
13,4 30,7 
8, l 22,7 

50,5 t47,9 

*Values less than 0.05 are rounded off to zero. 

at low temperatures. Noticeable deviations from the additivity rule for such systems are 
well known from experiments [ii, 12]. 

The connection between the parameter a and the magnitude of the thermodynamic mixing ef- 
fects in gases is seen in Table 2. It becomes more graphic if the results are represented 
in the reduced quantities 

E *  - 
E 

2 ~Ar~2 
3 

kT T ge- 

812 

as is ordinarily done for the second virial coefficient. 

Also presented in Table 2 are values of the functions Et = T(dE/dT) and E= = T2(d=E/ 
dT2). The function E2 describes the excess isobaric specific heat for mixing gases at con- 
stant temperature and pressure: 

) P E2. (13) Ac~ = OAHe -~ - -  2X1%2 T 
OT / p 

The excess isobaric specific heat of binary gas systems is negative in magnitude. 

Unfortunately, there are no experimental data on the excess specific heat of binary gas 
systems at moderate densities. Only results of measurements for a nitrogen--carbon dioxide 
mixture at high densities are known [13]. They indicate that the isobaric specific heat of 
gas mixtures can be several times lower than the corresponding quantity computed by the addi- 
tivity rule. 
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CALCULATION OF THE TRANSPORT COEFFICIENTS IN MULTICOMPONENT 

GAS MIXTURES 

I. V. Lebedev and V. V. Ryabov UDC 517.9:533.7 

An approximate method is discussed for calculating the transport coefficients in 
multicomponent gas mixtures. 

It is well known that the numerical integration of the equations of gasdynamics for mul- 
ticomponent mixture with transport coefficients calculated rigorously using kinetic theory is 
beset with serious difficulties. This is because i) the mass diffusion flux of the i-th com- 
ponent and the heat flux depend on the fluxes of all the other components and their gradients; 
2) for an N-component mixture it is necessary to compute the set of ~ij integrals, where i, 
j = i, ..., N; 3) in order to calculate the transport coefficients ratios of determinants of 
orders N and N + I are required. Hence with increase in the number of components, the number 
of computational operations and the memory required progressively increase. 

These difficulties have stimulated the development of various approximate methods of cal- 
culating transport coefficients. A widely used approximate relation for the thermal conduc- 
tivity and viscosity is based on the fact that the nondiagonal elements in the determinants 
are much smaller than the diagonal elements, and thus perturbation theory can be used, It 
should be noted that satisfactory results from first- and second-order perturbation theory 
can be achieved only by introducing an additional empirical parameter fitted to experimental 
data [I]. 

In the simplest method of calculating the mass-exchange coefficients, the diffusion co- 
efficients are set equal to each other and the coefficient of thermal diffusion is ignored 
even where this leads to serious error. 

The bifurcation method [2, 3] is used widely in engineering calculations. The use of 
different diffusion coefficients for the different components leads to only a slight compli- 
cation of the algebra and a somewhat increased execution time for the calculations. The 
main advantage of this method is that the resulting expression for the mass diffusion flux 
of the i-th component involves only variables and their gradients characterizing the system 
as a whole and the i-th component, but not any of the other components. In addition, in the 
calculation of the mass diffusion flux, it is sufficient to use only N quantities dependent 
on the molecular properties of the components. The error in the coefficients can be as large 
as 10% for the systems studied in [2]. 

In the approximation method used in [4], the mass diffusion flux of the i-th component 
is directly proportional to the concentration gradient of the i-th component only. In [4], 
approximate expressions were given for the constants of proportionality between these quan- 
tities (the effective diffusion coefficients) and it was shown that in several cases involv- 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 2, pp. 267-272, February, 
1984. Original article submitted October 5, 1983. 

194 0022-0841/85/4802-0194509.50 �9 1985 Plenum Publishing Corporation 


